Answer:
The diameter of the junction is 5.06 mm
Explanation:
Given that:
Ď = 8500 kg/mÂł
k = 35 W/m.k
[tex]c_p=320J/kg.K[/tex]
the heat transfer coefficient between the thermocouple junction and the gas  = [tex]hA_s=250W/m^2.k[/tex]
The initial temperature difference (tâ) = 42% = 0.42
t = 5 s
[tex]\frac{T(t)-T_\alpha }{T_i-T_\alpha } =1-t_0 = 1-0.42=0.58[/tex]
[tex]t=-\frac{\rho c_pL_c}{hA_s}ln\frac{T(t)-T_\alpha}{T_i-T_\alpha}[/tex]
Substituting values:
[tex]5=-\frac{8500* 320*L_c}{250}ln(0.58)\\L_c=8.436*10^{-4[/tex]
[tex]L_c=\frac{V}{A}=\frac{\frac{4\pi r_o^3}{3} }{4\pi r_o^2} = \frac{r_o}{3}=\frac{D}{6}\\ Therefore, D=6L_c\\D=6*8.436*10^{-4}=5.06mm[/tex]
The diameter of the junction is 5.06 mm