y ????, the air viscosity µ, the wind velocity V, the rotation rate Ωand the number of blades n. (a) Write this relationship in dimensionless form. A model windmill, of diameter 50 cm, develops 3.8 kW at sea level when V  40 m/s and when rotating at 4200 rpm. (b) What power will be developed by a geometrically and dynamically similar prototype, of diameter 15 m, in winds of 35 m/s at 500 m standard altitude from sea level? (c) What is the appropriate rotation rate of the prototype?

Respuesta :

Answer:

a) [tex]\frac{P}{\rho v^{3}D^{2} } = f(\frac{\Omega D}{v}, n)[/tex]

b) P = 2184.57 kW

c) [tex]\Omega = 122.5 rpm[/tex]

Explanation:

Pressure = P

Density = [tex]\rho[/tex]

Diameter = D

Velocity = v

Rate of rotation = Ω

number of blades = n

a) The relationship for the model is given by:

[tex]\frac{P}{\rho v^{3}D^{2} } = f(\frac{\Omega D}{v}, n)[/tex]

b) The Power developed geometrically and dynamically similar prototype:

The data corresponding to the model:

[tex]P_{mod} = 3.8 kW\\v_{mod} = 40 m/s\\D_{mod} = 50 cm = 0.5 m\\\rho_{mod} = 1.2255 kg/m^{3}\\ \Omega = 4200 rpm[/tex]

The data corresponding to the prototype

[tex]P_{prot} = ? \\v_{prot} = 35 m/s\\D_{prot} = 15 m\\\rho_{prot} = 1.1685 kg/m^{3}[/tex]

[tex](\frac{P}{\rho v^{3}D^{2} } )_{mod} = (\frac{P}{\rho v^{3}D^{2} } )_{prot}[/tex]

[tex]\frac{3.8}{1.2255 * 40^{3} * 0.5^{2} }= \frac{P}{1.1685 * 35^{3} * 15^{2} }\\P = \frac{3.8 * 1.1685 * 35^{3} * 15^{2}}{1.2255 * 40^{3} * 0.5^{2} }[/tex]

P = 2184.57 kW

c) To calculate the appropriate rotation rate for the prototype

[tex](\frac{\Omega D}{v})_{model} = (\frac{\Omega D}{v})_{prot}[/tex]

[tex]\frac{4200*0.5}{40}= \frac{\Omega * 15}{35}\\\Omega = \frac{4200*0.5*35}{40*15}\\\Omega = 122.5 rpm[/tex]