g Show that the first derivative of the magnitude of the net magnetic field of the coils (dB/dx) vanishes at the mid- point P regardless of the value of s. Why would you expect this to be true from symmetry? (b) Show that the second derivative (d2 B/dx2 ) also vanishes at P, provided s R. This accounts for the uniformity of B near P for this particular coil separation.

Respuesta :

Answer:

Hi Carter,

The complete answer along with the explanation is shown below.

I hope it will clear your query

Pls rate me brainliest bro

Explanation:

The magnitude of the magnetic field on the axis of a circular loop, a distance z Ā from the loop center, is given by Eq.:

B = NμοiR² / 2(R²+Z²)³÷²

where

R is the radius of the loop

N is the number of turns

i is the current.

Both of the loops in the problem have the same radius, the same number of turns, Ā and carry the same current. The currents are in the same sense, and the fields they Ā produce are in the same direction in the region between them. We place the origin Ā at the center of the left-hand loop and let x be the coordinate of a point on the axis Ā between the loops. To calculate the field of the left-hand loop, we set z = x in the Ā equation above. The chosen point on the axis is a distance s – x from the center of Ā the right-hand loop. To calculate the field it produces, we put z = s – x in the Ā equation above. The total field at the point is therefore

B = NμοiR²/2 [1/ 2(R²+x²)³÷²   + 1/ 2(R²+x²-2sx+s²)³÷²]

Its derivative with respect to x is

dB /dx=  - NμοiR²/2 [3x/ (R²+x²)⁵÷²   + 3(x-s)/(R²+x²-2sx+s²)⁵÷² ]

When this is evaluated for x = s/2 (the midpoint between the loops) the result is

dB /dx=  - NμοiR²/2 [3(s/2)/ (R²+s²/4)⁵÷²   - 3(s/2)/(R²+s²/4)⁵÷² ] =0

independent of the value of s.