Answer:
[tex]P(x) =-330\cdot x^{3} +9000\cdot x^{2}-67000\cdot x + 167000[/tex]
Step-by-step explanation:
The profit function is computed by using the following expression:
[tex]P(x) = R(x) - C(x)[/tex]
[tex]P(x) = 550\cdot x^{3} - 12000\cdot x^{2} + 83000\cdot x + 7000 - 880\cdot x^{3} + 21000\cdot x^{2} - 150000\cdot x + 160000[/tex]
[tex]P(x) = (550-880)\cdot x ^{3} + (-12000+21000)\cdot x^{2}+(83000-150000)\cdot x + (7000+160000)[/tex]
[tex]P(x) =-330\cdot x^{3} +9000\cdot x^{2}-67000\cdot x + 167000[/tex]