Respuesta :
Answer:
(a)12 Hours
(b)12.23 Hours
(c)12.68 Hours
Step-by-step explanation:
The number of hours of​ daylight, H, on day t of any given year​ (on January​ 1, t=​1) in a particular city can be modeled by the function:​[tex]H(t)=12+8.3 sine \frac{2 \pi}{365}(t-83)[/tex].
(a)On March 24​, the 83rd day
t=83
Therefore, the number of hours
[tex]H(t)=12+8.3 sine [\frac{2 \pi}{365}(83-83)][/tex].
H(t)=12 Hours
(b)June 24​, the 175th day.
t=175
[tex]H(175)=12+8.3 sine \frac{2 \pi}{365}(175-83)[/tex].
[tex]=12+8.3 sine [\frac{2 \pi}{365}(92)][/tex]=12.23 Hours
(c)December 24​, the 358th day
t=358
[tex]H(358)=12+8.3 sine [\frac{2 \pi}{365}(358-83)][/tex].
[tex]=12+8.3 sine [\frac{2 \pi}{365}(275)][/tex]=12.68 Hours
A sinusoidal function is one of the basic trigonometric functions
- There are 12 hours of daylight on March 24
- There are 20.3 hours of daylight on June 24
- There are 3.7 hours of daylight on December 24
The function is given as:
[tex]H(t) = 12 + 8.3\sin(\frac{2\pi}{365}(t - 83))[/tex]
(a) The number of daylight hours on March 24
March 24 is the 83rd day of the year.
So, we have:
[tex]H(t) = 12 + 8.3\sin(\frac{2\pi}{365}(83 - 83))[/tex]
[tex]H(t) = 12 + 8.3\sin(\frac{2\pi}{365}(0))[/tex]
Expand the bracket
[tex]H(t) = 12 + 8.3\sin(0)[/tex]
Evaluate sin(0)
[tex]H(t) = 12 + 8.3 \times 0[/tex]
[tex]H(t) = 12 + 0[/tex]
[tex]H(t) = 12[/tex]
Hence, there are 12 hours of daylight on March 24
(b) The number of daylight hours on June 24
June 24 is the 175th day of the year.
So, we have:
[tex]H(t) = 12 + 8.3\sin(\frac{2\pi}{365}(175 - 83))[/tex]
[tex]H(t) = 12 + 8.3\sin(\frac{2\pi}{365}(92))[/tex]
Expand the bracket
[tex]H(t) = 12 + 8.3\sin(0.5\pi)[/tex]
Evaluate sin(0.5 pi)
[tex]H(t) = 12 + 8.3\times 1[/tex]
[tex]H(t) = 12 + 8.3[/tex]
[tex]H(t) = 20.3[/tex]
Hence, there are 20.3 hours of daylight on June 24
(c) The number of daylight hours on June 24
December 24 is the 358th day of the year.
So, we have:
[tex]H(t) = 12 + 8.3\sin(\frac{2\pi}{365}(358 - 83))[/tex]
[tex]H(t) = 12 + 8.3\sin(\frac{2\pi}{365}(275))[/tex]
Expand the bracket
[tex]H(t) = 12 + 8.3\sin(1.5\pi)[/tex]
Evaluate sin(1.5 pi)
[tex]H(t) = 12 - 8.3\times 1[/tex]
[tex]H(t) = 12 - 8.3[/tex]
[tex]H(t) = 3.7[/tex]
Hence, there are 3.7 hours of daylight on December 24
Read more about sinusoidal functions at:
https://brainly.com/question/2410297