For heat transfer purposes, an egg can be considered to be a 5.5-cm-diameter sphere having the properties of water. An egg that is initially at 4.3°C is dropped into boiling water at 100°C. The heat transfer coefficient at the surface of the egg is estimated to be 800 W/m2⋅K. If the egg is considered cooked when its center temperature reaches 74°C, determine how long the egg should be kept in the boiling water. Solve this problem using the analytical one-term approximation method. The thermal conductivity and diffusivity of the eggs can be approximated by those of water at room temperature to be k = 0.607 W/m·°C and α = 0.146×10−6 m2/s.

Respuesta :

Answer:

The time taken is   [tex]t = 40007 sec[/tex]  

Explanation:

From the question we are told that

   The diameter of the egg is [tex]d_e = 5.5cm = \frac{5.5}{100} = 5.5*10^{-2}m[/tex]

    The initial temperature of egg the [tex]T_e = 4.3^{o}C[/tex]

     The temperature of the boiling water [tex]T_b = 100^oC[/tex]

    The heat transfer coefficient is  [tex]H = 800 W/m^2 \cdot K[/tex]

    The  final temperature is [tex]T_e_f = 74^oC[/tex]

     The  thermal  conductivity of water is [tex]k = 0.607 W/m^oC[/tex]

     The diffusivity of the egg [tex]\alpha = 0.146 * 10^{-6} m^2 /s[/tex]

Using one term approximation

We have the

            [tex]\frac{T_e_f - T_b}{T_e - T_b} = Ae^{-\lambda ^2 \tau}[/tex]

The radius is  [tex]r = \frac{5.5*10^ {-2}}{2} =2.75*10^{-2}m[/tex]     Note that this radius is approximation to that of  a real egg

    Now we need to obtain the Biot number which help indicate the value of [tex]A \ and \ \lambda[/tex] to use in the above equation

     The Biot number is mathematically represented as

               [tex]Bi = \frac{H r}{k}[/tex]

Substituting values  

               [tex]Bi = \frac{800 * 2.75 *10^{-2}}{0.607}[/tex]

                    [tex]= 36.24[/tex]

So for this value  which greater than 0.1 the  coefficient [tex]\lambda_1 \ and \ A_1[/tex] is  

        [tex]\lambda = 3.06632[/tex]

        [tex]A = 1.9942[/tex]

Substituting this into equation 1 we have

          [tex]\frac{74- 100}{4.3 - 100} = 1.9942 e^{-(3.0632^2) \tau}[/tex]

          [tex]0.2717= 1.9942 e^{-(3.0632^2) \tau}[/tex]

          [tex]0.2717= 1.9942 e^{-9.383 \tau}[/tex]

           [tex]0.13624 = e^{-9.383 \tau}[/tex]

Taking natural log of both sides

           [tex]-1.993 = -9.383\ \tau[/tex]

          [tex]\tau = 0.2124[/tex]

    The time required for the egg to be cooked is  mathematically represented as

          [tex]t = \frac{\tau r^2}{\alpha }[/tex]

substituting value  is  

         [tex]= \frac{0.2124 * 2.75 *10^{-2}}{0.146 *10^{-6}}[/tex]

         [tex]t = 40007 sec[/tex]