Answer:
The ratio of effusion rates for [tex]^{238}UF_6[/tex] and [tex]^{235}UF_6[/tex] is 0.995734.
Explanation:
Effusion rate of the [tex]^{235}UF_6 [/tex]gas = [tex]R[/tex]
Effusion rate of the [tex]^{238}UF_6 [/tex]gas = [tex]r[/tex]
Molar mass of [tex]^{235}UF_6=235.054+6\times 19.00 amu=349.054 amu[/tex]
Molar mass of [tex]^{238}UF_6=238.051+6\times 19.00 amu=352.051 amu[/tex]
Graham's law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:
[tex]\text{Rate of diffusion}\propto \frac{1}{\sqrt{\text{Molar mass of the gas}}}[/tex]
[tex]\frac{r}{R}=\sqrt{\frac{349.054 amu}{352.051 amu}}=0.995734[/tex]
The ratio of effusion rates for [tex]^{238}UF_6[/tex] and [tex]^{235}UF_6[/tex] is 0.995734.