Answer:
[tex] v= 381.82\ m/s[/tex]
Explanation:
Given,
mass of the bullet, m = 0.0233 Kg
Mass of the block, M = 2.41 Kg
horizontal spring constant, k = 845 N/m
Amplitude of oscillation, A = 0.196 m
Using conservation of energy when the bullet is embedded
PE = KE
[tex]\dfrac{1}{2}kA^2 = \dfrac{1}{2} Mv^2[/tex]
[tex]v =A \sqrt{\dfrac{k}{M}}[/tex]
[tex]v =0.196\times \sqrt{\dfrac{845}{2.41+0.0233}}[/tex]
[tex]v= 3.65\ m/s[/tex]
Now using conservation of  momentum to calculate the initial velocity of bullet
[tex] m V = M v[/tex]
[tex]0.0233\times v=(2.41+ 0.0233)\times 3.65[/tex]
[tex] v= 381.82\ m/s[/tex]