Respuesta :
Answer:
1.. 151keV
2. 56.9keV
3. It isn't possible to view an electron with such a photon because of the high energy
Explanation:
See attached file for calculation
The energy of a photon is the product of the planks constant and frequency. The photon energy of this light is 151 keV.
The Energy of a photon:
It is the product of the planks constant and frequency.
[tex]E = \dfrac {hc}\lambda[/tex]
Where,
[tex]h[/tex] -Plank's constant = [tex]\bold {6.63\times 10^{-34}\rm \ J/s}[/tex]
[tex]c[/tex]- speed of light = [tex]\bold { 3\times 10^8 \rm \ m/s }[/tex]
[tex]\lambda[/tex][tex]\labda[/tex]- wavelength = 8.2 pm = [tex]\bold {8.2 \times 10^{-12 }\rm \ m}[/tex]
Put the values in the equation,
[tex]E = \dfrac { 6.63\times 10^{-34}\rm \ J/s\times 3\times 10^8 \rm \ m/s }{ 8.2 \times 10^{-12 }\rm \ m}\\E = 151 \rm \ keV[/tex]
Therefore, the photon energy of this light is 151 keV.
Learn more about photon energy:
https://brainly.com/question/11733357