To practice Problem-Solving Strategy 27.1: Magnetic Forces. A particle with mass 1.81×10−3 kgkg and a charge of 1.22×10−8 CC has, at a given instant, a velocity v⃗ =(3.00×104m/s)j^v→=(3.00×104m/s)j^. What are the magnitude and direction of the particle’s acceleration produced by a uniform magnetic field B⃗ =(1.63T)i^+(0.980T)j^B→=(1.63T)i^+(0.980T)j^?

Respuesta :

Answer:

The magnitude of the acceleration  is [tex]a = 0.33 m/s^2[/tex]

The direction is [tex]- \r k[/tex] i.e the negative direction of the z-axis

Explanation:

 From  the question we are that

       The mass of the particle [tex]m = 1.8*10^{-3} kg[/tex]

         The charge on the particle is [tex]q = 1.22*10^{-8}C[/tex]

         The velocity is [tex]\= v = (3.0*10^4 m/s ) j[/tex]

        The the magnetic field is  [tex]\= B = (1.63T)\r i + (0.980T) \r j[/tex]

The charge experienced  a force which is mathematically represented as

         

                    [tex]F = q (\= v * \= B)[/tex]

    Substituting value

         [tex]F = 1.22*10^{-8} (( 3*10^4 ) \r j \ \ X \ \ ( 1.63 \r i + 0.980 \r j )T)[/tex]

            [tex]= 1.22 *10^{-8} ((3*10^4 * 1.63)(\r j \ \ X \ \ \r i) + (3*10^4 * 0.980) (\r j \ \ X \ \ \r j))[/tex]

            [tex]= (-5.966*10^4 N) \r k[/tex]

Note :

           [tex]i \ \ X \ \ j = k \\\\j \ \ X \ \ k = i\\\\k \ \ X \ \ i = j\\\\j \ \ X \ \ i = -k \\\\k \ \ X \ \ j = -i\\\\i \ \ X \ \ k = - j\\[/tex]

Now force is also mathematically represented as

        [tex]F = ma[/tex]

Making a the subject

      [tex]a = \frac{F}{m}[/tex]

   Substituting values

     [tex]a =\frac{(-5.966*10^4) \r k}{1.81*10^{-3}}[/tex]

        [tex]= (-0.33m/s^2)\r k[/tex]

        [tex]= 0.33m/s^2 * (- \r k)[/tex]