The polynomial p(x)=x^3-19x-30p(x)=x 3 −19x−30p, (, x, ), equals, x, cubed, minus, 19, x, minus, 30 has a known factor of (x+2)(x+2)(, x, plus, 2, ). Rewrite p(x)p(x)p, (, x, )as a product of linear factors.

Respuesta :

Answer:

∴P(x) = (x-5)(x+3)(x+2)

Step-by-step explanation:

A cubic polynomial has three zeros.

Given polynomial,

P(x)= x³-19x-30 has a know factor of (x+2).

To find the other zeros we first divide the polynomial by (x+2)

x+2)x³-19x-30     (x²-2x-15

      x³            +2x²

      -               -

_______________

        -2x²-19x-30

        -2x²-4x

        +      +  

_______________

                -15x-30

                -15x-30

               ________

                      ×

We know that,

Polynomial= quotient×division +reminder

x³-19x-30=(x²-2x-15)(x+2)

                 =(x²-5x+3x-15)(x+2)

                 ={x(x-5)+3(x-5)}(x+2)

                 =(x-5)(x+3)(x+2)

∴P(x) = (x-5)(x+3)(x+2)