A concentration cell based on the following half reaction at 289 K has initial concentrations of 1.39 M , 0.312 M , and a potential of 0.037206 V at these conditions. After 9.1 hours, the new potential of the cell is found to be 0.0095376 V. What is the concentration of at the cathode at this new potential

Respuesta :

Answer:

The concentration at the cathode is  [tex]A_1 = 0.8183M[/tex]

Explanation:

From the question we are told that

   The initial concentration is  [tex]1.39 M \ for \ Zn^{2+} \ at \ anode \ , 0.312 M \ for \ Zn^{2+} \ at \ cathode[/tex]

     The reaction is  

 At Cathode  [tex]Zn^{2+} + 2 e^- ------> Zn[/tex]

  At anode    [tex]Zn -----> Zn ^{2+} + 2e^{-}[/tex]

     The initial potential is  [tex]+ 0.037206V \ for \ Cathode \ and \ + 0.037206V \ for \ anode[/tex]

The complete reaction is

                      [tex]Zn^{2+} + Zn_{(s)} ----> Zn^{2+} + Zn_{(s)}[/tex]  

                       (Cathode)   -----------------  (anode)

 Looking the reaction above we can see that after the reaction  [tex]Zn^{2+}[/tex] at cathode loss some concentration and [tex]Zn^{2+}[/tex]  will gain some concentration

 Let say the amount of concentration lost/gained is = z M

The after the reaction the concentration of [tex]Zn^{2+}[/tex]  at the cathode would be

       [tex]A_1 = 1.39 -z[/tex]

While the concentration at the anode would be  

          [tex]A_2 = 0.312 +z[/tex]

At initial the condition the net potential of the cell is

        [tex]E^i_{net} = 0V[/tex]

    After time [tex]t = 9.1 hrs = 9.1 *3600 = 32760s[/tex]

     The potential  of the cell is  

                  [tex]E_{net} = 0.0095376V[/tex]

Generally this potential is defined by Nernst equation as

               [tex]E_{cell} = E^i_{cell}- \frac{RT}{nF} ln[\frac{[A_2]}{[A_2]} ][/tex]

Where R is the gas constant with a value of  [tex]R = 8.314 J/mol \cdot K[/tex]

           T is the temperature given as  [tex]T = 289K[/tex]

          n is the number of mole of electron which [tex]= 2 mol \ e^-[/tex]

           F is the farad constant with a value of  [tex]= 96500 C /mol\ e^-[/tex]

Substituting values

             [tex]0.0095376 =0.0 -\frac{[8.314][288]}{[2] [9600]} ln [\frac{(0.312 +z)}{(1.39 -z)} ][/tex]

             [tex]0.0095376 = 0.12406383 \ ln [\frac{( 0.312 + z)}{[1.39 -z]} ][/tex]

              [tex]\frac{0.0095376 }{ 0.12406383} = \ ln [\frac{( 0.312 + z)}{[1.39 -z]} ][/tex]

              [tex]0.0768766 = \ ln [\frac{( 0.312 + z)}{[1.39 -z]} ][/tex]

      Taking exponent of both sides

               [tex]e^{0.0768766 }= [\frac{( 0.312 + z)}{[1.39 -z]} ][/tex]

                [tex]1.0799 = [\frac{( 0.312 + z)}{[1.39 -z]} ][/tex]  

                [tex][1.39 -z ]1.0799 = 0.312 + z \\\\1.501 - 1.0799z = 0.312 +z\\\\1.501-0.312 = 1.0799z + z\\\\1.1891 =2.0799z\\\\ z =\frac{1.1891}{2.0799}\\\\ z =0.5717[/tex]  

The concentration at the cathode is  [tex]A_1 = 1.39 -0.5717[/tex]

                                                               [tex]A_1 = 0.8183M[/tex]