Answer:
Simplest radical form for the solutions: [tex]x=\frac{-2+/-\,\sqrt{19} }{3}[/tex]
Step-by-step explanation:
The solutions to the quadratic equation ([tex]-3x^2-4x+5[/tex]) is given by applying the quadratic formula with values: [tex]a=-3,\,\,b=-4,\,\,and\,\,c=5[/tex]
Which becomes:
[tex]x=\frac{-b+/-\,\sqrt{b^2-4ac} }{2\,a} \\x=\frac{4+/-\,\sqrt{(-4)^2-4(-3)(5)} }{2\,(-3)} \\x=\frac{4+/-\,\sqrt{16+60} }{-6} \\x=\frac{4+/-\,\sqrt{72} }{-6} \\x=\frac{2*2+/-\,2\sqrt{19} }{-3*2} \\x=\frac{-2+/-\,\sqrt{19} }{3}[/tex]