Answer:
2.85 rad/s
Explanation:
5 cm = 0.05 m
20 g = 0.02 kg
When dropping the 2nd object at a distance of 0.05 m from the center of mass, its corrected moments of inertia is:
[tex]I_2 = 1.32\times10^{−6} + 0.02 * 0.05^2 = 0.513\times10^{-4} kgm^2[/tex]
So the total moment of inertia of the system of 2 objects after the drop is:
[tex]I = I_1 + I_2 = 9.7\times10^{-4} + 0.513\times10^{-4} = 0.0010213 kgm^2[/tex]
From here we can apply the law of angular momentum conservation to calculate the post angular speed
[tex]\omega_1 I_1 = \omega_2 I[/tex]
[tex]\omega_2 = \omega_1 \frac{I_1}{I} = 3 \frac{9.7\times10^{-4}}{0.0010213} = 2.85 rad/s[/tex]