Consider the spring-mass-damper system defined by (all parameters are in SI units) 4� + 24� + 100� = 16���5� Assume zero initial conditions. Complete following steps. Part I a. Determine if the system is underdamped, critically damped or overdamped. b. Compute the steady-state response xp c. Compute the transient response xh d. Total response x(t) = xh + xp f. Plot x(t)

Respuesta :

Answer:

a) The system is under-damped

b) The steady state response,  [tex]x_{p} = \frac{8 sin(5t)}{15}[/tex]

c) The transient response, [tex]x_{h} = \frac{ie^{(-3-4i)t}(-1+e^{8it} }{3}[/tex]

d) The total response, [tex]x(t) = \frac{8 sin(5t)}{15} +\frac{ie^{(-3-4i)t}(-1+e^{8it} ) }{3}[/tex]

x(t) was plotted on matlab

Explanation:

a) The equation is : [tex]4\frac{d^{2}x }{dt} + 24\frac{dx}{dt} + 100x = 16 cos 5t[/tex]............(1)

The general equation of a spring-mass-damper system is given by:

[tex]\frac{d^{2} x}{dt^{2} } + 2 \zeta w_{n} \frac{dx}{dt} + w_{n} ^{2} x = 0[/tex]....................(2)

Comparing equation (1) with equation (2)

[tex]w_{n} ^{2} = 100/4\\w_{n} = 52 \zeta w_{n} = 6\\2 * 5 * \zeta = 6\\\zeta = 0.6[/tex]

Since [tex]\zeta < 1[/tex], the system is under-damped

b) Take the inverse laplace transform of equation (1)

[tex](4s^{2} + 24s + 100) X(s) = \frac{16s}{s^{2} + 25 }[/tex]

[tex](4s^{2} + 24s + 100)(s^{2} + 25) X(s) = 16s\\X(s) = \frac{16s}{(4s^{2} + 24s + 100)(s^{2} + 25)}[/tex]

Taking the Inverse laplace transform of X(s)

[tex]x(t) = \frac{16 sin(5t)}{30} + 16 \frac{ie^{(-3-4i)t}(-1+e^{8it} }{48}[/tex]

The steady state response is:

[tex]x_{p} = \frac{16 sin(5t)}{30}[/tex]

c) The transient response is:

[tex]x_{h} = \frac{16ie^{(-3-4i)t}(-1+e^{8it} ) }{48}\\x_{h} = \frac{ie^{(-3-4i)t}(-1+e^{8it} }{3}[/tex]

d) The total response:

[tex]x(t) = x_{h} + x_{p} \\[/tex]

[tex]x(t) = \frac{8 sin(5t)}{15} +\frac{ie^{(-3-4i)t}(-1+e^{8it} ) }{3}[/tex]

Ver imagen kollybaba55