Respuesta :

Given:

Given that the irregular figure is broken into a triangle and a rectangle.

We need to determine the length b, the area of the triangle , the area of the rectangle and the area of the irregular figure.

Length of b:

The length of b , the base of the triangle is given by

[tex]b=5-(2\frac{1}{3})[/tex]

Simplifying, we get;

[tex]b=5-\frac{7}{3}[/tex]

[tex]b=\frac{8}{3} \ ft[/tex]

Thus, the length of the base of the triangle is [tex]\frac{8}{3} \ ft[/tex]

Area of the triangle:

The area of the triangle can be determined using the formula,

[tex]A=\frac{1}{2}bh[/tex]

Substituting [tex]b=\frac{8}{3} \ ft[/tex] and [tex]h=3 \ ft[/tex], we get;

[tex]A=\frac{1}{2}(\frac{8}{3})(3)[/tex]

[tex]A=4 \ ft^2[/tex]

Thus, the area of the triangle is 4 square feet.

Area of the rectangle:

The area of the rectangle can be determined using the formula,

[tex]A=lw[/tex]

where l = 5 ft, [tex]w=1 \frac{1}{3}=\frac{4}{3} \ ft[/tex], we get;

[tex]A=5 \times \frac{4}{3}[/tex]

[tex]A=\frac{20}{3} \ ft^2[/tex]

Thus, the area of the rectangle is [tex]\frac{20}{3} \ ft^2[/tex]

Area of the irregular figure:

The area of the irregular figure can be determined by adding the area of the triangle and the area of the rectangle.

Thus, we have;

Area = Area of the triangle + Area of the rectangle

Substituting the values, we have;

[tex]Area = 4+\frac{20}{3}[/tex]

[tex]Area = 10.667 \ ft^2[/tex]

Thus, the area of the irregular figure is 10.667 square feet.

Answer:

The answers your ACTAULLY looking for is

Step-by-step explanation:

1. 2 2/3

2. 4

3. 6 2/3

4. 10 2/3

( I know these answers cause I got them wrong and told me the correct answers)