A long, thin straight wire with linear charge density λ runs down the center of a thin, hollow metal cylinder of radius R. The cylinder has a net linear charge density 2λ. Assume λ is positive. Part A Find expressions for the magnitude of the electric field strength inside the cylinder, r

Respuesta :

Answer:

[tex]E=\frac{\lambda}{2\pi r\epsilon_0}[/tex]

Explanation:

We are given that

Linear charge density of wire=[tex]\lambda[/tex]

Radius of hollow cylinder=R

Net linear charge density of cylinder=[tex]2\lambda[/tex]

We have to find the expression for the magnitude of the electric field strength inside the cylinder r<R

By Gauss theorem

[tex]\oint E.dS=\frac{q}{\epsilon_0}[/tex]

[tex]q=\lambda L[/tex]

[tex]E(2\pi rL)=\frac{L\lambda}{\epsilon_0}[/tex]

Where surface area of cylinder=[tex]2\pi rL[/tex]

[tex]E=\frac{\lambda}{2\pi r\epsilon_0}[/tex]