Answer:
(a) Frequency at which current is maximum is 323.9 Hz
(B) Maximum current in the circuit is 19.333 A
Explanation:
We have given resistance R = 10.5 ohm
Capacitance [tex]C=15.9\mu F=15.9\times 10^{-6}F[/tex]
Inductance [tex]L=15.2mH=15.2\times 10^{-3}H[/tex]
(a) Current is maximum when impedance will be minimum and impedance is minimum when there is condition of resonance.
At resonance [tex]X_C=X_L[/tex]
[tex]\frac{1}{\omega C}=\omega L[/tex]
[tex]\omega ^2=\frac{1}{15.9\times 10^{-6}\times 15.2\times 10^{-3}}[/tex]
[tex]\omega =2034.13[/tex]
[tex]2\pi f =2034.13[/tex]
f = 323.9 Hz
(b) Current will maximum when resonance occurs at resonance impedance of the circuit is equal to resistance.
Voltage is given V = 203 volt
So maximum current [tex]i=\frac{203}{10.5}=19.333A[/tex]