You are given the polar curve r=eθ. (a) List all of the points (r,θ) where the tangent line is horizontal. In entering your answer, list the points starting with the smallest value of r and limit yourself to 1≤r≤1000 ( note the restriction on r!) and 0≤θ<2π. If two or more points share the same value of r, list those starting with the smallest value of θ. If any blanks are unused,

Respuesta :

Answer:

θ   [tex]0.75\pi[/tex]     [tex]1.75\pi[/tex]

r   10.551  244.151

Step-by-step explanation:

The maximum value for [tex]\theta[/tex] is:

[tex]\theta_{max} = \ln r[/tex]

[tex]\theta_{max} = 2.199\pi\,rad[/tex]

The formula for the slope of the tangent line in polar coordinates is:

[tex]m = \frac{r'\cdot \sin \theta + r \cdot \cos \theta}{r' \cdot \cos \theta - r \cdot \cos \theta}[/tex]

Horizontal tangent lines have a slope of zero. So, the following relation must be satisfied:

[tex]r'\cdot \sin \theta + r \cdot \cos \theta = 0[/tex]

[tex]r'\cdot \sin \theta = - r \cdot \cos \theta[/tex]

[tex]\tan \theta = - \frac{r}{r'}[/tex]

[tex]\tan \theta = -\frac{e^{\theta}}{e^{\theta}}[/tex]

[tex]\tan \theta = -1[/tex]

[tex]\theta = \tan^{-1}(-1)[/tex]

[tex]\theta = \frac{3}{4}\pi + i\cdot \pi[/tex], for all [tex]i \in \mathbb{N}_{O}[/tex].

The maximum value of i is:

[tex]i = \frac{\theta_{max}-\frac{3}{4}\pi }{\pi}[/tex]

[tex]i = \frac{2.199-0.75}{1}[/tex]

[tex]i = 1.449[/tex] ([tex]i_{max} = 1[/tex]).

Then, values are listed below:

θ   [tex]0.75\pi[/tex]     [tex]1.75\pi[/tex]

r   10.551  244.151

Answer:

{ ( 2.193 , π / 4)   , ( 10.551 , 3π / 4) ,  ( 50.754 , 5π / 4)  , ( 244.151 , 7π / 4)  }

Step-by-step explanation:

Given:-

- The polar curve has the equation:

                           r = e^θ

- list the points starting with the smallest value of r such that:

                1 ≤ r ≤ 1000   ,  0 ≤ θ < 2π.

Find:-

List all of the points (r,θ) where the tangent line is horizontal

Solution:-

- We will first transform the polar curve to cartesian coordinate system using the parametric relations:

                  x = r*cos (θ)

                  y = r*sin (θ)

- The tangent line is horizontal when the " dy / dθ  " = 0 and " dx / dθ  " = 0, so:

                  x = e^θ*cos (θ)      ,    y = e^θ*sin (θ)

                  dx / dθ = e^θ*cos (θ) - e^θ*sin(θ)

                               = e^θ*[cos (θ) - sin(θ)]

                  dx / dθ = e^θ*[cos (θ) - sin(θ)] = 0,

                  e^θ = 0    ,      [cos (θ) - sin(θ)] = 0

                  e^θ ≠ 0 for the given interval 0 ≤ θ< 2π  

                  cos (θ) - sin(θ) = 0 , tan ( θ ) = 1 - (1st quad and 3rd quad)

                  θ = { π / 4 , 5π / 4 } , 0 ≤ θ< 2π    

- Similarly, evaluate dy/dθ = 0;

                   dy/dθ = e^θ*cos (θ) + e^θ*sin(θ)

                              = e^θ*[cos (θ) + sin(θ)]

                  dy / dθ = e^θ*[cos (θ) + sin(θ)] = 0,

                  e^θ = 0    ,      [cos (θ) + sin(θ)] = 0

                  e^θ ≠ 0 for the given interval 0 ≤ θ< 2π  

                  cos (θ) + sin(θ) = 0 , tan ( θ ) = -1 , (2nd quad and 4th quad)

                  θ = { 3π / 4 , 7π / 4 } , 0 ≤ θ< 2π

- All possibilities of " θ " over the interval satisfying the a horizontal tangent line to the given polar curve:

                  θ = { π / 4, 3π / 4 , 5π / 4 , 7π / 4 } , 0 ≤ θ < 2π  

- We will plug the evaluated list of values of "θ " in the given polar curve and determine the corresponding values of "r":

                  r = e^θ

                  θ = π / 4  , r = e^(π / 4) = 2.193        

               1: ( r , θ ) = ( 2.193 , π / 4)        

                  θ = 3π / 4  , r = e^(3π / 4) = 10.55072        

               2: ( r , θ ) = ( 10.551 , 3π / 4)  

                  θ = 5π / 4  , r = e^(5π / 4) = 50.754      

               3: ( r , θ ) = ( 50.754 , 5π / 4)  

                 θ = 7π / 4  , r = e^(7π / 4) = 244.151      

               4: ( r , θ ) = ( 244.151 , 7π / 4)