Find the average value of the function over the given interval. (Round your answer to three decimal places.) f(x) = −sin x, [0, π] Find all values of x in the interval for which the function equals its average value. (Enter your answers as a comma-separated list. Round your answers to three decimal places.)

Respuesta :

Answer with Step-by-step explanation:

We are given that

[tex]f(x)=-sin x[/tex]

[tex][0,\infty][/tex]]

Average value of the function is given gy

[tex]f_{avg}=\frac{1}{b-a}\int_{a}^{b}f(x)dx=\frac{1}{\pi-0}\int_{0}^{\pi}-sinx dx[/tex]

[tex]f_{avg}=\frac{1}{\pi}[cosx]^{\pi}_{0}[/tex]

Using the formula

[tex]\int sin xdx=-cos x[/tex]

[tex]f_{avg}=\frac{1}{\pi}(cos\pi-cos0)[/tex]

[tex]f_{avg}=\frac{1}{\pi}(-1-1)=-\frac{2}{\pi}[/tex]

[tex]f(x)=f_{avg}[/tex]

[tex]-sinx=-\frac{2}{\pi}[/tex]

[tex]sinx=\frac{2}{\pi}[/tex]

[tex]x=sin^{-1}(\frac{2}{\pi})=0.69radian[/tex]

The average value of the function is [tex]-\frac{2}{\pi}[/tex].

Average value :

The average value of the function is given as,

                    [tex]Average=\frac{1}{\pi} \int\limits^\pi_0 {f(x)} \, dx[/tex]

Given function is, [tex]f(x)=-sinx[/tex]

Substitute values in above relation.

                [tex]Average=\frac{1}{\pi} \int\limits^\pi_0 {-sinx} \, dx\\\\Average=\frac{1}{\pi} (cosx)^{\pi} _{0}\\\\Average=\frac{1}{\pi}(cos\pi - cos 0)\\\\Average=\frac{1}{\pi}(-1-1)\\\\Average=-\frac{2}{\pi}[/tex]

The values of x in the interval for which the function equals its average value is,

              [tex]-sinx=-\frac{2}{\pi}\\ \\x=sin^{-1} (\frac{2}{\pi} )=39.56[/tex]

Learn more about the average value of function here:

https://brainly.com/question/20118982