Answer:
0.000507 kg/m
Explanation:
L = Length of string
T = Tension
[tex]\mu[/tex] = Mass density of string
E denotes the E string
D denotes the D String
Frequency is given by
[tex]f=\dfrac{1}{2L}\sqrt{\dfrac{T}{\mu}}[/tex]
So
[tex]f\propto \sqrt{\dfrac{1}{\mu}}[/tex]
[tex]\dfrac{f_D}{f_E}=\sqrt{\dfrac{\mu_E}{\mu_D}}\\\Rightarrow \mu_E=\dfrac{f_D^2}{f_E^2}\mu_D\\\Rightarrow \mu_E=\dfrac{146.83^2}{329.63^2}\times 0.00256\\\Rightarrow \mu_E=0.000507\ kg/m[/tex]
The mass density of the E string is 0.000507 kg/m