An inverted pyramid is being filled with water at a constant rate of 25 cubic centimeters per second. The pyramid, at the top, has the shape of a square with sides of length 4 cm, and the height is 12 cm. Find the rate at which the water level is rising when the water level is 4 cm.

Respuesta :

Answer:

[tex]\frac{225}{16} cm/s[/tex]

Step-by-step explanation:

We are given that

[tex]\frac{dV}{dt}=25cm^3/s[/tex]

Side of base=4 cm

l=w=4 cm

Height,h=12 cm

We have to find the rate at which the water level rising when the water level is 4 cm.

Volume of pyramid=[tex]\frac{1}{3}lwh=\frac{1}{3}l^2h[/tex]

[tex]\frac{l}{h}=\frac{4}{12}=\frac{1}{3}[/tex]

[tex]l=\frac{1}{3}h[/tex]

Substitute the value

[tex]V=\frac{1}{27}h^3[/tex]

Differentiate w.r.t t

[tex]\frac{dV}{dt}=\frac{3}{27}h^2\frac{dh}{dt}[/tex]

Substitute the values

[tex]25=\frac{1}{9}(4^2)\frac{dh}{dt}[/tex]

[tex]\frac{dh}{dt}=\frac{25\times 9}{16}=\frac{225}{16} cm/s[/tex]