A sample of bacteria is being eradicated by an experimental procedure. The population is following a pattern of exponential decay and approaching a population of 0. If the sample begins with 500 bacteria and after 11 minutes there are 200 bacteria, after how many minutes will there be 50 bacteria remaining? Round your answer to the nearest whole number, and do not include units. answer

Respuesta :

Answer:

There will be 50 bacteria remaining after 28 minutes.

Step-by-step explanation:

The exponential decay equation is

[tex]N=N_0e^{-rt}[/tex]

N= Number of bacteria after t minutes.

[tex]N_0[/tex] = Initial number of bacteria when t=0.

r= Rate of decay per minute

t= time is in minute.

The sample begins with 500 bacteria and after 11 minutes there are 200 bacteria.

N=200

[tex]N_0[/tex] = 500

t=11 minutes

r=?

[tex]N=N_0e^{-rt}[/tex]

[tex]\therefore 200=500e^{-11r}[/tex]

[tex]\Rightarrow e^{-11r}=\frac{200}{500}[/tex]

Taking ln both sides

[tex]\Rightarrow ln| e^{-11r}|=ln|\frac{2}{5}|[/tex]

[tex]\Rightarrow {-11r}=ln|\frac{2}{5}|[/tex]

[tex]\Rightarrow r}=\frac{ln|\frac{2}{5}|}{-11}[/tex]

To find the time when there will be 50 bacteria remaining, we plug N=50, [tex]N_0[/tex]= 500 and  [tex]r}=\frac{ln|\frac{2}{5}|}{-11}[/tex] in exponential decay equation.

[tex]50=500e^{-\frac{ln|\frac25|}{-11}.t}[/tex]

[tex]\Rightarrow \frac{50}{500}=e^{\frac{ln|\frac25|}{11}.t}[/tex]

Taking ln both sides

[tex]\Rightarrow ln|\frac{50}{500}|=ln|e^{\frac{ln|\frac25|}{11}.t}|[/tex]

[tex]\Rightarrow ln|\frac{1}{10}|={\frac{ln|\frac25|}{11}.t}[/tex]

[tex]\Rightarrow t= \frac{ln|\frac{1}{10}|}{\frac{ln|\frac25|}{11}.}[/tex]

[tex]\Rightarrow t= \frac{11\times ln|\frac{1}{10}|}{{ln|\frac25|}}[/tex]

[tex]\Rightarrow t\approx 28[/tex] minutes

There will be 50 bacteria remaining after 28 minutes.