Respuesta :
Answer:
The confidence interval for the mean is given by the following formula: Â
[tex]\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
The margin of error is given by:
[tex] ME= z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
For this case since the confidence is 99% we are confident that the true proportion of interest would be on the interval calculated and the best option for this case is:
Of confidence intervals with this margin of error, 99% will contain the population proportion
Step-by-step explanation:
Previous concepts
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval". Â
The margin of error is the range of values below and above the sample statistic in a confidence interval. Â
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean". Â
Solution to the problem
The confidence interval for the mean is given by the following formula: Â
[tex]\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
The margin of error is given by:
[tex] ME= z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
For this case since the confidence is 99% we are confident that the true proportion of interest would be on the interval calculated and the best option for this case is:
Of confidence intervals with this margin of error, 99% will contain the population proportion