Answer:
1. 67.2 kJ/mol
Explanation:
Using the derived expression from Arrhenius Equation
[tex]In \ (\frac{k_2}{k_1}) = \frac{E_a}{R}(\frac{T_2-T_1}{T_2*T_1})[/tex]
Given that:
time [tex]t_1[/tex] = 8.3 days = (8.3 × 24 ) hours = 199.2 hours
time [tex]t_2[/tex] = 10.6 hours
Temperature [tex]T_1[/tex] = 0° C = (0+273 )K = 273 K
Temperature [tex]T_2[/tex] = 30° C = (30+ 273) = 303 K
Rate = 8.314 J / mol
Since [tex](\frac{k_2}{k_1}=\frac{t_2}{t_1})[/tex]
Then we can rewrite the above expression as:
[tex]In \ (\frac{t_2}{t_1}) = \frac{E_a}{R}(\frac{T_2-T_1}{T_2*T_1})[/tex]
[tex]In \ (\frac{199.2}{10.6}) = \frac{E_a}{8.314}(\frac{303-273}{273*303})[/tex]
[tex]2.934 = \frac{E_a}{8.314}(\frac{30}{82719})[/tex]
[tex]2.934 = \frac{30E_a}{687725.766}[/tex]
[tex]30E_a = 2.934 *687725.766[/tex]
[tex]E_a = \frac{2.934 *687725.766}{30}[/tex]
[tex]E_a =67255.58 \ J/mol[/tex]
[tex]E_a =67.2 \ kJ/mol[/tex]