An airplane flying at a distance of 8.6 km from a radio transmitter receives a signal of intensity 9.1 μW/m2. What is the amplitude of the (a) electric and (b) magnetic component of the signal at the airplane? (c) If the transmitter radiates uniformly over a hemisphere, what is the transmission power?

Respuesta :

Answer:

[tex]2.761\times 10^{-10}\ T[/tex]

Explanation:

[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi \times 10^{-7}\ H/m[/tex]

I = Intensity = [tex]9.1\ \mu W/m^2[/tex]

r = Radius = 8.6 km

c = Speed of light = [tex]3\times 10^8\ m/s[/tex]

Electric field is given by

[tex]E=\sqrt{2I\mu_0c}\\\Rightarrow E=\sqrt{2\times 9.1\times 10^{-6}\times 4\pi \times 10^{-7}\times 3\times 10^8}\\\Rightarrow E=0.0828\ V/m[/tex]

The electric component is 0.0828 V/m

Magnetic field is given by

[tex]B=\dfrac{E}{c}\\\Rightarrow B=\dfrac{0.0828325923501}{3\times 10^8}\\\Rightarrow B=2.761\times 10^{-10}\ T[/tex]

The magnetic field is [tex]2.761\times 10^{-10}\ T[/tex]

Power is given by

[tex]P=IA\\\Rightarrow P=I2\pi r^2\\\Rightarrow P=9.1\times 10^{-6}\times \pi\times 8600^2\\\Rightarrow P=2114.404\ W[/tex]

The power of transmission is 2114.404 W