Answer:
[tex]\alpha=214.8 rad/s^2[/tex]
Explanation:
We are given that
[tex]F_1=137 N[/tex]
[tex]F_2=43 N[/tex]
Net force=F=[tex]F_1-F_2=137-43=94 N[/tex]
Mass,m=1.21 kg
Radius,r=0.723 m
We have to find the magnitude of its angular acceleration.
Moment of inertia ,[tex]I=\frac{1}{2}mr^2[/tex]
Substitute the values
Torque ,[tex]\tau=I\alpha[/tex]
[tex]F_{net}\times r=\frac{1}{2}mr^2\alpha[/tex]
[tex]\alpha=\frac{2F_{net}}{mr}[/tex]
[tex]\alpha=\frac{2\times 94}{1.21\times 0.723}[/tex]
[tex]\alpha=214.8 rad/s^2[/tex]