Answer:
[tex]T_{1}=105.38 N[/tex]
[tex]T_{2}=187.34 N[/tex]
Explanation:
Applying the second Newton's law for the first box we have.
[tex]-f_{1f}+T_{1}=m_{A}a[/tex]
[tex]-\mu_{k}N_{1}+T_{1}=m_{A}a[/tex]
We know that the normal force is the product between the weight and the kinetic friction, so we have:
[tex]-\mu_{k}m_{A}g+T_{1}=m_{A}a[/tex]
Now we can find T₁:
[tex]\mu_{k}m_{A}g+m_{A}a=T_{1}[/tex]
The acceleration is the same for both boxes.
[tex]T_{1}=m_{1}(\mu_{k}g+a)[/tex]
[tex]T_{1}=18*(0.240*9.81+3.5)[/tex]
[tex]T_{1}=105.38 N[/tex]
Now let's analyze the forces of the second box.
[tex]-f_{2f}-T_{1}+T_{2}=m_{B}a[/tex]
[tex]-\mu_{k}m_{B}g-T_{1}+T_{2}=m_{B}a[/tex]
Let's solve it for T₂.
[tex]T_{2}=m_{B}a+T_{1}+\mu_{k}m_{B}g[/tex]
[tex]T_{2}=m_{B}a+T_{1}+\mu_{k}m_{B}g[/tex]
[tex]T_{2}=m_{B}(a+\mu_{k}g)+T_{1}[/tex]
[tex]T_{2}=14(3.5+0.240*9.81)+105.38[/tex]
[tex]T_{2}=187.34 N[/tex]
I hope it helps you!