Answer:
[tex]3\cos(\frac{8\pi}{5}x)+5[/tex]
Step-by-step explanation:
Recall that a cosine function of the form [tex]A\cos(Bx-C)+D[/tex] has the following:
- amplitude A
- Frequeny [tex]\frac{B}{2\pi}[/tex].
- Phase shift [tex]\frac{C}{B}[/tex]
- Midline D
So, in our case, we know that A=3, [tex]\frac{B}{2\pi}=\frac{4}{5}[/tex](which implies that [tex]B=\frac{8\pi}{5}[/tex]) and D=5. Since we are not said everything about the Phase shift, lets asumme that the Phase shift is 0. Hence C=0.
Then, our desired function is [tex]3\cos(\frac{8\pi}{5}x)+5[/tex]