Respuesta :
Answer:
Triangle ACD is similar to triangle RST
Step-by-step explanation:
In triangle ACD
[tex]\angle A=74.9^{\circ}[/tex]
[tex]\angle D=60^{\circ}[/tex]
In triangle RST
[tex]\angle R=74.9^{\circ}[/tex]
[tex]\angle S=45.1^{\circ}[/tex]
In triangle ACD
[tex]\angle A+\angle C+\angle D=180^{\circ}[/tex]
By triangle angles sum property
Substitute the values
[tex]74.9+60+\angle C=180[/tex]
[tex]\angle C=180-(74.9+60)=45.1^{\circ}[/tex]
Angle A=Angle R
Angle C=Angle S
Therefore, triangle ACD is similar to triangle RST
Reason:By AA similarity postulate
