Each of the two drums and connected hubs of 13-in. radius weighs 210 lb and has a radius of gyration about its center of 30 in. Calculate the magnitude of the angular acceleration of each drum. Friction in each bearing is negligible.

Respuesta :

Complete Question

The diagram for this question is shown on the first uploaded image  

Answer:

The angular acceleration for  first drum [tex]\alpha = 0.792 rad/s^2[/tex]

The angular acceleration for the second drum is  [tex]\alpha =1.262[/tex]

Explanation:

From the question we are told that

         Their radius of the drum is  [tex]r = 13 in = \frac{13}{12} ft = 1.083ft[/tex] each

          The weight is  [tex]W = 210 lb[/tex]

           The mass is  [tex]M = \frac{210 lb}{32.2 ft /s^2} = 6.563\ lb s^2 ft^{-1}[/tex]

           Their radius of gyration is [tex]z=30 in= \frac{30 }{12} = 2.5 ft[/tex]

 The free body diagram of a drum and its hub and 30lb and in the case the weight is connect to the hub separately is shown on the second uploaded image

    The T in the diagram is the tension of the string

  Now taking moment about the center of the the drum P we have  

        [tex]\sum M_p = I_p \alpha[/tex]

=>    [tex]T * r = Mz^2 * \alpha[/tex]

Where r is the radius ,z is the radius of gyration about the center O  , M is the mass  of the drum including  the  hub, and [tex]\alpha[/tex]  is the angular acceleration

   Inputting

                 [tex]T * 1.083 = 6.563 * 2.5^2 \alpha[/tex]

=>                         [tex]T = 37.87\alpha[/tex]

Considering the force equilibrium in the vertical direction (Looking at the second free body diagram now  )

The first on is  

           [tex]\sum F_y = ma[/tex]

=>       [tex]30lb - T = m(r \alpha )[/tex]

Where m is the mass of  the hanging block which has a value  of

[tex]m = \frac{30lb}{32.2 ft/s^2} = 0.9317 \ lb ft^{-1} s^2[/tex]

            a  is the acceleration of the hanging block

 inputting values we have  

              [tex]30- 37.87 \alpha = 0.9317* 1.083 \alpha[/tex]

              [tex]30 = 37.87\alpha + \alpha[/tex]

              [tex]\alpha = \frac{30}{38.87 }[/tex]

                 [tex]\alpha = 0.792 rad/s^2[/tex]

So the angular acceleration for  first drum [tex]\alpha = 0.792 rad/s^2[/tex]

 The free body diagram of a drum and its hub when the only on the string is 30lb is shown on the third uploaded image  

  So here we would take the moment about  O

             [tex]\sum M_o = I_O \alpha[/tex]

So  [tex]\sum M_o = 30* 1.083[/tex]

       and  [tex]I = M z^2[/tex]

Therefore we will have

            [tex]30 * 1.083 = (Mz^2 )\alpha[/tex]

  inputting values

                       [tex]30 * 1.083 = 6.563 * 2.5^2 \alpha[/tex]

                        [tex]32.49=41.0\alpha[/tex]

                         [tex]\alpha =\frac{41}{32.49}[/tex]

                          [tex]\alpha =1.262[/tex]

So the angular acceleration for the second drum is  [tex]\alpha =1.262[/tex]

Ver imagen okpalawalter8
Ver imagen okpalawalter8
Ver imagen okpalawalter8