Respuesta :

Answer:

 4 • (2a + 3b) • (2a - 3b)

Step-by-step explanation:

Step  1  :

Equation at the end of step  1  :

 (16 • (a2)) -  (22•32b2)

Step  2  :

Equation at the end of step  2  :

 24a2 -  (22•32b2)

Step  3  :

Step  4  :

Pulling out like terms :

4.1     Pull out like factors :

  16a2 - 36b2  =   4 • (4a2 - 9b2)

Trying to factor as a Difference of Squares :

4.2      Factoring:  4a2 - 9b2

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

        A2 - AB + BA - B2 =

        A2 - AB + AB - B2 =

        A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  4  is the square of  2

Check : 9 is the square of 3

Check :  a2  is the square of  a1

Check :  b2  is the square of  b1

Factorization is :       (2a + 3b)  •  (2a - 3b)

Final result :

 4 • (2a + 3b) • (2a - 3b)