Answer:
1.97
Step-by-step explanation:
The null hypothesis is:
[tex]H_{0} = 250[/tex]
The alternate hypotesis is:
[tex]H_{1} \neq 250[/tex]
Our test statistic is:
[tex]t = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the hypothesis tested(null hypothesis), [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
In this problem, we have that:
[tex]X = 251.6, \mu = 250, \sigma = 5.4, n = 44[/tex]
So
[tex]t = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]t = \frac{251.6 - 250}{\frac{5.4}{\sqrt{44}}}[/tex]
[tex]t = 1.97[/tex]