Respuesta :

Answer:

The value of m is [tex]-\frac83[/tex].

Step-by-step explanation:

If two vectors [tex]\vec A[/tex] and [tex]\vec B[/tex] are perpendicular to each other then their dot product will be zero i.e [tex]\vec A.\vec B=0[/tex]

If two vectors [tex]\vec A[/tex] and [tex]\vec B[/tex] are parallel to each other then their cross product will be zero i.e [tex]\vec A\times\vec B=\vec 0[/tex]

Given vectors are a= (3,4) and b=(m,2)

The position vector of [tex]\vec a[/tex]  is =[tex]3 \hat i+4\hat j[/tex]

The position vector of [tex]\vec b[/tex]  is =[tex]m \hat i+2\hat j[/tex]

Since [tex]\vec a[/tex] and [tex]\vec b[/tex] are perpendicular.

Then,

[tex]\vec a. \vec b=0[/tex]

[tex]\Rightarrow (3\hat i+4\hat j).(m\hat i+2 \hat j)=0[/tex]

⇒3.m +4.2=0

⇒3m+8=0

⇒3m= -8

[tex]\Rightarrow m=-\frac 83[/tex]

The value of m is [tex]-\frac83[/tex].