Respuesta :
Answer:
(A)
- Definition of altitude
- c⋅sinA
- [tex]c\cdot sinA=a\cdot sinC[/tex].
Step-by-step explanation:
Law of Sines/Cosines.
- Given triangle ABC with altitude segment BD labeled x. Angles ADB and CDB are right angles by the (1) definition of altitude making triangle ABD and triangle BCD right triangles.
- Using the trigonometric ratios [tex]sin A=\dfrac{x}{c}[/tex] and [tex]sin C=\dfrac{x}{a}[/tex].
- Multiplying to isolate x in both equations gives (2)[tex]x=c\cdot sinA[/tex] and [tex]x=a\cdot sinC.[/tex]
- We also know that x = x by the reflexive property.
- By the substitution property,(3)[tex]c\cdot sinA=a\cdot sinC[/tex].
- Dividing each side of the equation by ac gives:
[tex]\frac{c\cdot sinA}{ac} =\frac{a\cdot sinC}{ac} \\\frac{ sinA}{a} =\frac{sinC}{c}[/tex]
Answer: answer A
Step-by-step explanation:
1. Definition of altitude
2. c • sinA
3. c • SinA= a • sinC