Answer:
Weights of at least 340.1 are in the highest 20%.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
[tex]\mu = 330, \sigma = 12[/tex]
a. Highest 20 percent
At least X
100-20 = 80
So X is the 80th percentile, which is X when Z has a pvalue of 0.8. So X when Z = 0.842.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.842 = \frac{X - 330}{12}[/tex]
[tex]X - 330 = 12*0.842[/tex]
[tex]X = 340.1[/tex]
Weights of at least 340.1 are in the highest 20%.