Answer : The rate constant for this reaction is, [tex]3.65\times 10^{-3}Ms^{-1}[/tex]
Explanation :
To calculate the rate constant for zero order reaction, the expression used is:
[tex]\ln [A]=-kt+\ln [A_o][/tex]
where,
[tex][A_o][/tex] = initial concentration
[tex][A][/tex] = final concentration = [tex]5.00\times 10^{-2}M[/tex] at 195 s
[tex][A][/tex] = final concentration = [tex]2.50\times 10^{-2}M[/tex] at 385 s
k = rate constant = ?
Now put all the given values in the above expression, we get:
[tex]\ln (5.00\times 10^{-2})=-k\times 195+\ln [A_o][/tex] Â Â Â ............(1)
and,
[tex]\ln (2.50\times 10^{-2})=-k\times 385+\ln [A_o][/tex] Â Â Â Â ............(2)
Subtracting 1 from 2, we get:
[tex]\ln (2.50\times 10^{-2})-\ln (5.00\times 10^{-2})=-k\times 385+\ln [A_o]+k\times 195-\ln [A_o][/tex]
[tex]\ln (2.50\times 10^{-2})-\ln (5.00\times 10^{-2})=-k\times 385+k\times 195[/tex]
[tex]-0.693=-190k[/tex]
[tex]k=3.65\times 10^{-3}Ms^{-1}[/tex]
Therefore, the rate constant for this reaction is, [tex]3.65\times 10^{-3}Ms^{-1}[/tex]