Respuesta :
Answer:
2.74 × 10⁸ M⁻¹.s⁻¹ = 2.74 × 10⁸ L.mol⁻¹.s⁻¹
Explanation:
Let's consider the following second-order reaction.
NO(g) + F₂(g) → NOF(g) + F(g)
We can find the rate constant (k) using the Arrhenius equation.
[tex]k=A \times e^{-Ea/R\times T}[/tex]
where,
- A: frequency factor
- Ea: activation energy
- R: ideal gas constant
- T: absolute temperature (695°C + 273.15 = 968 K)
[tex]k=6.00 \times 10^{8} M^{-1}.s^{-1} \times e^{-6.30\times 10^{3}J /(8.314 J/mol.K)\times 968 K} = 2.74 \times 10^{8} M^{-1}.s^{-1}[/tex]
The dimensions of the rate constant units would be:
[tex]2.74[/tex] × [tex]10^8 M^{-1}[/tex][tex].S^{-1}.[/tex] = [tex]2.74[/tex] × [tex]10^8 L.mol^{-1} .s^{-1}[/tex]
Rate Constant
What information do we have:
Ea = 6.30 kJ/mol
A = 6.00×108[tex]M^{-1} .s^{-1}[/tex]
Reaction:
[tex]NO(g) + F2(g)[/tex] → [tex]NOF(g) + F(g)[/tex]
To find,
Rate constant = ?
By employing the equation of Arrhenius,
[tex]k = a[/tex] × [tex]e^{-Ea/R * T}[/tex]
with,
a being the factor of frequency
Ea denoting energy of activation
R denoting the exact constant of gas
T denoting right temperature i.e. 968 K
Temperature Ideal comes from
695°C + 273.15°
= 968 K
by putting the values, we get:
⇒ [tex]2.74[/tex] × [tex]10^8 M^{-1}[/tex][tex].S^{-1}.[/tex] = [tex]2.74[/tex] × [tex]10^8 L.mol^{-1} .s^{-1}[/tex].
Thus, the correct answer is [tex]2.74[/tex] × [tex]10^8 M^{-1}[/tex][tex].S^{-1}.[/tex] = [tex]2.74[/tex] × [tex]10^8 L.mol^{-1} .s^{-1}[/tex].
Learn more about "Frequency" here:
brainly.com/question/4393505