Respuesta :
Answer:
b.[tex]9\sqrt{3}in[/tex]
Step-by-step explanation:
We are given that
Length of equilateral triangle=a=18 in
Base of oblique pyramid is an equilateral triangle.
We have to find the height of the triangular base of the pyramid
Height of the triangular base of the pyramid,h=[tex]acos\theta[/tex]
We know that each angle of equilateral triangle =60 degree
[tex]\theta=\frac{60}{2}=30^{\circ}[/tex]
Substitute the values
Height of triangular base of the pyramid,h=[tex]18cos30=18\times \frac{\sqrt 3}{2}[/tex]in
Using the value of
[tex]cos30^{\circ}=\frac{\sqrt 3}{2}[/tex]
Height of triangular base of the pyramid,h=[tex]9\sqrt{3}in[/tex]
Option b is true.
Answer:
It's the second option 9 √ 3 in
Step-by-step explanation:
just did it on edge