A sinusoidally oscillating current I ( t ) with an amplitude of 9.55 A and a frequency of 359 cycles per second is carried by a long, straight wire. A rectangular loop of copper wire with dimensions b = 72.2 cm by c = 32.5 cm is located a = 80.2 cm from the straight wire, and is coplanar with it. Calculate the average power P avg dissipated by the loop if its resistance is 64.3 Ω .

Respuesta :

Answer:

[tex]P_{avg} = 6.283*10^{-9} \ W[/tex]

Explanation:

Given that;

I₀ = 9.55 A

f = 359 cycles/s

b = 72.2 cm

c = 32.5 cm

a = 80.2 cm

Using the formula;

[tex]\phi = \frac{\mu_o Ic }{2 \pi} In (\frac{b+a}{b})[/tex]

where;

[tex]E= \frac{d \phi}{dt}[/tex]

[tex]E = \frac{\mu_o}{2 \pi}c In (\frac{b+a}{a}) I_o \omega cos \omega t[/tex]

[tex]E_{rms} = \frac { {\frac{\mu_o \ c}{2 \pi} In (\frac{b+a}{a}) I_o (2 \pi f)}}{\sqrt{2}}[/tex]

Replacing our values into above equation; we have:

[tex]E_{rms} = \frac { {\frac{4 \pi*10^{-7}*0.325}{2 \pi} In (\frac{72.2+80.2}{80.2}) *9.55 (2 \pi *359)}}{\sqrt{2}}[/tex]

[tex]E_{rms} = \frac {8.98909588*10^{-4} }{\sqrt{2}}[/tex]

[tex]E_{rms} = 6.356*10^{-4} \ V[/tex]

Then the [tex]P_{avg[/tex] is calculated as:

[tex]P_{avg} = \frac{E^2}{R}[/tex]

[tex]P_{avg} = \frac{(6.356*10^{-4})^2}{64.3}[/tex]

[tex]P_{avg} = 6.283*10^{-9} \ W[/tex]

The average power dissipated through the loop is  6.283 × 10⁻⁹ W

Given information:

Current I = 9.55A

frequency, f = 359 cycles/s

so, ω = 2πf

ω = 2π×359

ω = 2254.52 rad/s

dimensions of the loop:

b = 72.2 cm

c = 32.5 cm

distance from wire

a = 80.2 cm

Average Power:

The magnetic flux through the coil:

[tex]\phi=\frac{\mu_oIc}{2\pi}\ln(\frac{b+a}{b})\\\\\phi=\frac{\mu_oc}{2\pi}\ln(\frac{b+a}{b})I_osin\omega t[/tex]

The EMF generated :

[tex]E = \frac{d\phi}{dt} \\\\E = \frac{\mu_oc}{2\pi}\ln(\frac{b+a}{b})I_o\omega cos\omega t\\\\E = \frac{\mu_oIc}{2\pi}\ln(\frac{b+a}{b})\omega\\\\E=\frac{4\pi\times10^{-7}\ln(\frac{72.2+80.2}{80.2})\times9.55\times2254.52 }{2\pi}\\\\[/tex]

E ≈ 9 × 10⁻⁴ V

The RMS value will be:

[tex]E_{rms}=E/\sqrt{2}\\\\E_{rms}=6.36\times10^{-4}V[/tex]

Now the average power dissipated is given by:

[tex]P = \frac{E_{rms}^2}{R}\\\\P=\frac{(6.36\times10^{-4})^2}{64.3}[/tex]

P = 6.283 × 10⁻⁹ W

Learn more about magnetic flux:

https://brainly.com/question/15359941?referrer=searchResults