Suppose that A and B each randomly, and independently, choose 3 of 10 objects. Find the expected number of objects (a) chosen by both A and B; (b) not chosen by either A or B; (c) chosen by exactly one of A and B.

Respuesta :

Answer:

a) N(A∩B) = 0.9

b) N(A∩B) = 4.9

c) N(A or B) = 4.2

Step-by-step explanation:

Given that A and B each randomly, and independently, choose 3 of 10 objects;

P(A) = P(B) = 3/10 = 0.3

P(A') = P(B') = 1 - 0.3 = 0.7

a) chosen by both;

Probability of being chosen by both;

P(A∩B) = 0.3 × 0.3 = 0.09

Expected Number of objects being chosen by both;

N(A∩B) = P(A∩B) × N(total) = 0.09×10

N(A∩B) = 0.9

b) not chosen by either A or B;

Probability of not being chosen by either A or B;

P(A'∩B') = 0.7 × 0.7 = 0.49

Expected Number of objects being chosen by both;

N(A'∩B') = P(A'∩B') × N(total) = 0.49×10

N(A∩B) = 4.9

c) chosen by exactly one of A and B.

Probability of being chosen by exactly one of A and B

P(A∩B') + P(A'∩B) = 0.3×0.7 + 0.7 × 0.3 = 0.42

Expected Number of objects being chosen by both;

N(A or B) = 0.42 × 10

N(A or B) = 4.2