Sarah’s stands on a ground and sights the top of a steep Clift at a 60 degree angle of elevation she then steps back 50 meters then sights the top of the steep cliff at a 30 degree angle if Sarah is 1.8 meters tall how tall is the cliff to the nearest meter ?

Respuesta :

Answer:

Cliff is 45 m tall.

Step-by-step explanation:

Given:

Height of Sarah = 1.8 m

Angle of elevation = 60°

Angle of elevation 50 m back = 30°

As shown in the figure we have two right angled triangles SPQ and SPR.

Let the height of the cliff be [tex]h[/tex] meters and [tex]h= h_1+h_s[/tex].

Using trigonometric ratios:

tan (Ф) = opposite/adjacent

In ΔSPQ.                                        In ΔSPR.

⇒ [tex]tan(60) = \frac{h_1}{x}[/tex] ...equation (i)        ⇒ [tex]tan (30)=\frac{h_1}{x+50}[/tex]  ...equation (ii)

Dividing equation (i) and (ii)

⇒ [tex]\frac{tan(60)}{tan(30)} = \frac{h_1}{x} \times \frac{x+50}{h_1}[/tex]

⇒ [tex]3 = \frac{x+50}{x}[/tex]

⇒ [tex]3x=x+50[/tex]

⇒ [tex]3x-x=50[/tex]

⇒ [tex]2x=50[/tex]

⇒ [tex]x=\frac{50}{2}[/tex]

⇒ [tex]x=25[/tex] meters

To find [tex]h_1[/tex] plugging [tex]x=25[/tex] in equation (i)

⇒ [tex]h_1=x\times tan(60)[/tex]

⇒ [tex]h_1=25\times 1.73[/tex]

⇒ [tex]h_1=43.25[/tex] meters

The height of the cliff from ground :

⇒ [tex]h= h_1+h_s[/tex]

⇒ [tex]h= 43.25+1.8[/tex]

⇒ [tex]h=45.05[/tex] meters

The cliff is 45 m tall to the nearest meter.

Ver imagen jitushashi143