A capacitor charging circuit consists of a battery, an uncharged 20 μF capacitor, and a 6.0 kΩ resistor. At t = 0 s the switch is closed; 0.15 s later, the current is 0.46 mA . Part A What is the battery's emf?

Respuesta :

Answer:

Battery voltage will be equal to 9.65 volt

Explanation:

We have given capacitance [tex]C=20\mu F=20\times 10^{-6}F[/tex]

Resistance [tex]R=6kohm=6000ohm[/tex]

Time constant of RC circuit is

[tex]\tau =RC=20\times 10^{-6}\times 6000=0.12sec[/tex]

Time is given t = 0.15 sec

Current i = 0.46 mA

Current in RC circuit is given by

[tex]i=\frac{V}{R}e^{\frac{-t}{\tau }}[/tex]

[tex]0.00046=\frac{V}{6000}e^{\frac{-0.15}{0.12 }}[/tex]

[tex]0.00046=\frac{V}{6000}\times 0.286[/tex]

V = 9.65 volt

So battery emf will be equal to 9.65 volt

The battery's emf will be "9.63 V".

Given values are:

Capacitor,

  • C = [tex]20 \ \mu f[/tex]

           = [tex]20\times 10^{-6} \ F[/tex]

Resistor,

  • R = 6.0 kΩ

           = [tex]6\times 10^3 \ \Omega[/tex]

At t = 0.15,

Current,

  • I = 0.46 mA

          = [tex]0.46\times 10^{-3} \ A[/tex]

Since,

→ [tex]I = I_0.e^{-t/RC}[/tex]

→ [tex]I = \frac{E}{R}. e^{-t/RC}[/tex]

or,

→ [tex]E = \frac{IR}{e^{-t/Rc }}[/tex]

      [tex]= \frac{(0.46\times 10^{-3}A)(6\times 10^3 \Omega)}{e^{-[\frac{0.15}{(6\times 10^3)(20\times 10^{-6})} ]}}[/tex]

      [tex]= 9.63 \ V[/tex]  

Learn more about resistor here:

https://brainly.com/question/15240056