Respuesta :
Practice:
1. A.
2. D. y=5+0.84x-0.03x^2, x>=0
3. B. y=2/x, x>0
Quiz:
1. A C E. (-4,4) (0,0) (6,9)
2. A. y=-1/3x+19/3
3. D. x=2y^2-1, y>=0
4. B. y=3/x^2, x>0
For the first parametric functions the cartisian function is y = 5+ 0.84x - 0.7x², and for the second parametric function the cartisian function is y = 2/x where x>0
What are parametric equations?
A parametric equation in mathematics specifies a set of numbers as functions of one or more independent variables known as parameters.
For the first parametric functions:
[tex]\rm x(t)=23t \\\\y(t)=5+19.3t-16t^2[/tex]
[tex]\rm t = \dfrac{x}{23}[/tex]
Put this value in the y(t)
[tex]\rm y=5+19.3(\dfrac{x}{23})-16(\dfrac{x}{23})^2[/tex]
y = 5+ 0.84x - 0.7x²
For the second parametric functions
[tex]\rm x(t)=e^t .....(1)\\\\y(t)=2e^-^t[/tex]
Taking ln in equation (1)
lnx = t
Put this value in equation (2)
[tex]\rm y=2e^{-lnx}[/tex]
y = 2/x, Â x>0
Thus, for the first parametric functions the cartisian function is y = 5+ 0.84x - 0.7x², and for the second parametric function the cartisian function is y = 2/x where x>0
Learn more about the parametric function here:
https://brainly.com/question/10271163
#SPJ2