Respuesta :

Answer:

r=1/π

Step-by-step explanation:

Area of the circle is defined as:

Area = πr²

Derivating both sides

[tex]\frac{dA}{dr}[/tex]=2πr

[tex]\frac{dA}{dt}[/tex]  =  [tex]\frac{dA}{dr}[/tex] x [tex]\frac{dr}{dt}[/tex]  =  2πr[tex]\frac{dr}{dt}[/tex]

If area of an expanding circle is increasing twice as fast as its radius in linear units. then we have : [tex]\frac{dA}{dt}[/tex]  =2[tex]\frac{dr}{dt}[/tex]

Therefore,

2πr [tex]\frac{dr}{dt}[/tex]  =  2  [tex]\frac{dr}{dt}[/tex]

r=1/π

Answer:

r = 1/π

Step-by-step explanation:

Here we have

Area of a circle given as

Area = πr²

Where:

r = Radius of the circle

When the area of the circle is expanding twice as fast s the radius we have

[tex]\frac{dA}{dt} =2 \times \frac{dr}{dt}[/tex]

However,

[tex]\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}[/tex] and

[tex]\frac{dA}{dr} = \frac{d\pi r^2}{dr} = 2\pi r[/tex]

Therefore, we have

[tex]\frac{dA}{dt} =2 \times \frac{dr}{dt} = 2\pi r \times \frac{dr}{dt}[/tex]

Cancelling like terms

[tex]1= \pi r[/tex]

Therefore, [tex]r = \frac{1}{\pi }[/tex].