contestada

On the planet Arrakis, a male ornithoid sings at a frequency of 1180 Hz. When flying toward her mate at a speed of 30 m/s, a female ornithoid hears the sound at a frequency of 1250 Hz. What is the speed of sound in the atmosphere of Arrakis?

Respuesta :

Answer:

775m/s

Explanation:

See attached file

Ver imagen chamberlainuket

Answer:

The speed of sound in the atmosphere of Arrakis is 505.7 m/s.

Explanation:

given information:

male frequency, [tex]f_{m}[/tex] = 1180 Hz

female speed, [tex]v_{f}[/tex] = 30 m/s

female frequency, [tex]f_{f}[/tex] = 1250

to calculate the speed of sound in the atmosphere of Arrakis, we can use Doppler effect

[tex]f_{l} = \frac{v + v_{l} }{v+v_{s} } f_{s}[/tex]

where

[tex]f_{l}[/tex] = the frequency of listener

[tex]f_{s}[/tex] = the frequency of source

[tex]v[/tex] = speed of sound wave

[tex]v_{l}[/tex] = speed of listener

[tex]v_{s}[/tex] = speed of source

in this case, the male ornithoid is the source while the female is the listener.

[tex]v_{l}[/tex] or speed of listener is positive since the listener move toward the source, so

[tex]f_{l} = \frac{v + v_{l} }{v+v_{s} } f_{s}[/tex]

[tex]1250 = \frac{v +30}{v+0} 1180[/tex]

[tex]\frac{1250}{1180} = \frac{v+30}{v}[/tex]

[tex]\frac{125}{118} = \frac{v+30}{v}[/tex]

[tex]125v = 118v+3540[/tex]

[tex](125-118) v = 3540[/tex]

[tex]v = \frac{3540}{7}[/tex]

  = 505.7 m/s