contestada

Identify whether each value of x is a discontinuity of the function by typing asymptote, hole, or neither.
5x
x3 + 5x2 + 6x
x= -3
x = -2
x=0
x = 2
x= 3
x=5
DONE

Respuesta :

Answer:

x = −3   asymptote

x = −2   asymptote

x = 0     hole

x = 2     neither

x = 3     neither

x = 5     neither

Step-by-step explanation: edg 2020

A discontinuous function is simply the opposite of a continuous function.

The values of x are:

  • [tex]\mathbf{x = 0}[/tex]  --- hole
  • [tex]\mathbf{x = -3 \ or \ x = -2}[/tex] --- asymptote.
  • x = 2, 3, 5 -- none

The function is given as:

[tex]\mathbf{f(x) = \frac{5x}{x^3 + 5x^2 + 6x}}[/tex]

Factor out x

[tex]\mathbf{f(x) = \frac{5x}{x(x^2 + 5x + 6)}}[/tex]

Cancel out the common factor

[tex]\mathbf{f(x) = \frac{5}{x^2 + 5x + 6}}[/tex]

So, we have:

[tex]\mathbf{x = 0}[/tex]  --- hole

Expand

[tex]\mathbf{f(x) = \frac{5}{x^2 + 2x + 3x + 6}}[/tex]

Factorize

[tex]\mathbf{f(x) = \frac{5}{x(x + 2) + 3(x + 2)}}[/tex]

Factor out x + 2

[tex]\mathbf{f(x) = \frac{5}{(x + 3)(x + 2)}}[/tex]

Equate the denominator to 0

[tex]\mathbf{(x + 3)(x + 2) = 0}[/tex]

Split

[tex]\mathbf{x + 3 = 0 \ or \ x + 2 = 0}[/tex]

Solve for x

[tex]\mathbf{x = -3 \ or \ x = -2}[/tex] --- asymptote.

So, the other x values are none.

Read more about discontinuity of functions at:

https://brainly.com/question/23754097