Respuesta :
Answer:
The missing constant is 64.
Step-by-step explanation:
The general form of a perfect square for the difference between two numbers is:
[tex](a-b)^{2}=a^{2}+2a(-b)+b^{2}[/tex]
The expression provided is:
[tex]x^{2}-16x+\_\_[/tex]
Let the missing constant be denoted as a.
Compute the missing value as follows:
[tex](x-a)^{2}=x^{2}-16x+a^{2}\\[/tex]
[tex]x^{2}+(2\times x\times -a)+a^{2}=x^{2}-16x+a^{2}[/tex]
[tex]-2ax=-16x\\[/tex]
[tex]2a=16[/tex]
[tex]a=8[/tex]
The complete expression is:
[tex]x^{2}-16x+\_\_=x^{2}-16x+64[/tex]
Thus, the missing constant is 64.
Answer:
The answer is 64
Step-by-step explanation:
I got it right on khan academy;)