Respuesta :

Answer: y = 1/4x + 3

Step-by-step explanation:

-First determine the slope of the line. The formula for determining the slope is [tex]m=\frac{y2 - y1}{x2-x1}[/tex] where [tex]m[/tex] is the slope and the x and y terms are for the points [tex](x1, y1)[/tex] and [tex]( x2, y2)[/tex]

-So, for this problem the slope is:

[tex]m = \frac{3-2}{0+4}[/tex]

[tex]m = \frac{1}{4}[/tex]

-Then, use the point-slope formula:

[tex]y-y1=m(x-x1)[/tex]

-Substituting one of our points gives:

[tex]y-2=\frac{1}{4} (x+4)[/tex]

[tex]y-2=\frac{1}{4}x +1[/tex]

-Solving for [tex]y[/tex] to put it in standard form:

[tex]y-2+2=\frac{1}{4}x +1 +2[/tex]

[tex]y + 0 = \frac{1}{4}x +3[/tex]

- Result:

[tex]y=\frac{1}{4}x +3[/tex]