Answer: y = 1/4x + 3
Step-by-step explanation:
-First determine the slope of the line. The formula for determining the slope is [tex]m=\frac{y2 - y1}{x2-x1}[/tex] where [tex]m[/tex] is the slope and the x and y terms are for the points [tex](x1, y1)[/tex] and [tex]( x2, y2)[/tex]
-So, for this problem the slope is:
[tex]m = \frac{3-2}{0+4}[/tex]
[tex]m = \frac{1}{4}[/tex]
-Then, use the point-slope formula:
[tex]y-y1=m(x-x1)[/tex]
-Substituting one of our points gives:
[tex]y-2=\frac{1}{4} (x+4)[/tex]
[tex]y-2=\frac{1}{4}x +1[/tex]
-Solving for [tex]y[/tex] to put it in standard form:
[tex]y-2+2=\frac{1}{4}x +1 +2[/tex]
[tex]y + 0 = \frac{1}{4}x +3[/tex]
- Result:
[tex]y=\frac{1}{4}x +3[/tex]