f(x) = 4x^2+2x+6f(x)=4x 2 +2x+6f, left parenthesis, x, right parenthesis, equals, 4, x, squared, plus, 2, x, plus, 6 What is the value of the discriminant of fff? How many distinct real number zeros does fff have?

Respuesta :

Given:

The given function is [tex]f(x)=4x^2+2x+6[/tex]

We need to determine the value of the discriminant f and also to determine the distinct real number zeros of f.

Discriminant:

The discriminant can be determined using the formula,

[tex]\Delta = b^2-4ac[/tex]

Now, we shall determine the discriminant of the function [tex]f(x)=4x^2+2x+6[/tex]

Substituting the values in the formula, we have;

[tex]\Delta=(2)^2-4(4)(6)[/tex]

[tex]\Delta=4-96[/tex]

[tex]\Delta=-92[/tex]

Thus, the value of the discriminant of f is -92.

Distinct roots:

The distinct zeros of the function f can be determined by

(1) If [tex]\Delta>0[/tex], then the function has 2 real roots.

(2) If [tex]\Delta=0[/tex], then the function has 2 real roots ( or one repeated root).

(3) If [tex]\Delta <0[/tex], then the function has 2 imaginary roots (or no real roots).

Since, the discriminant is [tex]\Delta=-92 \ < \ 0[/tex] , then the function has no real roots  or 2 imaginary roots.

Thus, the function has 2 imaginary roots.